Convex Relaxations for Subset Selection

نویسندگان

  • Francis R. Bach
  • Selin Damla Ahipasaoglu
  • Alexandre d'Aspremont
چکیده

We use convex relaxation techniques to produce lower bounds on the optimal value of subset selection problems and generate good approximate solutions. We then explicitly bound the quality of these relaxations by studying the approximation ratio of sparse eigenvalue relaxations. Our results are used to improve the performance of branch-and-bound algorithms to produce exact solutions to subset selection problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Just Relax: Convex Programming Methods for Subset Selection and Sparse Approximation

Subset selection and sparse approximation problems request a good approximation of an input signal using a linear combination of elementary signals, yet they stipulate that the approximation may only involve a few of the elementary signals. This class of problems arises throughout electrical engineering, applied mathematics and statistics, but small theoretical progress has been made over the l...

متن کامل

Cones of Matrices and Successive Convex Relaxations of Nonconvex Sets

Let F be a compact subset of the n-dimensional Euclidean space Rn represented by (finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive semidefinite programming (SDP) relaxations and the other on successive linear programming (LP) relaxations. Each of our methods generates a sequence of compact convex subsets Ck (k = 1, 2, . . . ) of Rn such that (...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

Convex structures via convex $L$-subgroups of an $L$-ordered group

In this paper, we first characterize the convex $L$-subgroup of an $L$-ordered group by means of fourkinds of cut sets of an $L$-subset. Then we consider the homomorphic preimages and the product of convex $L$-subgroups.After that, we introduce an $L$-convex structure constructed by convex $L$-subgroups.Furthermore, the notion of the degree to which an $L$-subset of an $L$-ord...

متن کامل

On Convex Programming Relaxations for the Permanent

In recent years, several convex programming relaxations have been proposed to estimate the permanent of a non-negative matrix, notably in the works of [GS02, Gur11, GS14]. However, the origins of these relaxations and their relationships to each other have remained somewhat mysterious. We present a conceptual framework, implicit in the belief propagation literature, to systematically arrive at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1006.3601  شماره 

صفحات  -

تاریخ انتشار 2010